Line |
Branch |
Exec |
Source |
1 |
|
|
/* BEGIN software license |
2 |
|
|
* |
3 |
|
|
* MsXpertSuite - mass spectrometry software suite |
4 |
|
|
* ----------------------------------------------- |
5 |
|
|
* Copyright(C) 2009,...,2018 Filippo Rusconi |
6 |
|
|
* |
7 |
|
|
* http://www.msxpertsuite.org |
8 |
|
|
* |
9 |
|
|
* This file is part of the MsXpertSuite project. |
10 |
|
|
* |
11 |
|
|
* The MsXpertSuite project is the successor of the massXpert project. This |
12 |
|
|
* project now includes various independent modules: |
13 |
|
|
* |
14 |
|
|
* - massXpert, model polymer chemistries and simulate mass spectrometric data; |
15 |
|
|
* - mineXpert, a powerful TIC chromatogram/mass spectrum viewer/miner; |
16 |
|
|
* |
17 |
|
|
* This program is free software: you can redistribute it and/or modify |
18 |
|
|
* it under the terms of the GNU General Public License as published by |
19 |
|
|
* the Free Software Foundation, either version 3 of the License, or |
20 |
|
|
* (at your option) any later version. |
21 |
|
|
* |
22 |
|
|
* This program is distributed in the hope that it will be useful, |
23 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
24 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
25 |
|
|
* GNU General Public License for more details. |
26 |
|
|
* |
27 |
|
|
* You should have received a copy of the GNU General Public License |
28 |
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>. |
29 |
|
|
* |
30 |
|
|
* END software license |
31 |
|
|
*/ |
32 |
|
|
|
33 |
|
|
|
34 |
|
|
/////////////////////// Std includes |
35 |
|
|
#include <cmath> |
36 |
|
|
|
37 |
|
|
|
38 |
|
|
/////////////////////// Local includes |
39 |
|
|
#include "PkaPhPi.hpp" |
40 |
|
|
|
41 |
|
|
|
42 |
|
|
namespace MsXpS |
43 |
|
|
{ |
44 |
|
|
|
45 |
|
|
namespace libXpertMass |
46 |
|
|
{ |
47 |
|
|
|
48 |
|
|
|
49 |
|
|
/*! |
50 |
|
|
\class MsXpS::libXpertMass::PkaPhPi |
51 |
|
|
\inmodule libXpertMass |
52 |
|
|
\ingroup PolChemDefBuildingdBlocks |
53 |
|
|
\inheaderfile PkaPhPi.hpp |
54 |
|
|
|
55 |
|
|
\brief The PkaPhPi class provides a model for specifying the |
56 |
|
|
acido-basic properties of a chemical entity. |
57 |
|
|
*/ |
58 |
|
|
|
59 |
|
|
|
60 |
|
|
/*! |
61 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_ph |
62 |
|
|
|
63 |
|
|
\brief The pH of the environment. |
64 |
|
|
|
65 |
|
|
This pH value is required to compute the number of charges of a given chemical |
66 |
|
|
entity (a \l Polymer) sequence, for example. |
67 |
|
|
*/ |
68 |
|
|
|
69 |
|
|
/*! |
70 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_pi |
71 |
|
|
|
72 |
|
|
\brief The pI of the chemical entity. |
73 |
|
|
*/ |
74 |
|
|
|
75 |
|
|
/*! |
76 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_polymer |
77 |
|
|
|
78 |
|
|
\brief The polymer of which the acidobasic properties are computed. |
79 |
|
|
*/ |
80 |
|
|
|
81 |
|
|
/*! |
82 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_calcOptions |
83 |
|
|
|
84 |
|
|
\brief The \l CalcOptions that configure the way the computations are to be |
85 |
|
|
carried out. |
86 |
|
|
*/ |
87 |
|
|
|
88 |
|
|
/*! |
89 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_positiveCharges |
90 |
|
|
|
91 |
|
|
\brief The count of positive charges. |
92 |
|
|
*/ |
93 |
|
|
|
94 |
|
|
/*! |
95 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::m_negativeCharges |
96 |
|
|
|
97 |
|
|
\brief The count of negative charges. |
98 |
|
|
*/ |
99 |
|
|
|
100 |
|
|
/*! |
101 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::mpa_monomerList |
102 |
|
|
|
103 |
|
|
\brief The list of \l Monomer instances as read from the pka_ph_pi.xml file. |
104 |
|
|
|
105 |
|
|
The PkaPhPi instance takes ownership of the items and of the list itself. |
106 |
|
|
*/ |
107 |
|
|
|
108 |
|
|
/*! |
109 |
|
|
\variable MsXpS::libXpertMass::PkaPhPi::mpa_modifList |
110 |
|
|
|
111 |
|
|
\brief The list of \l Modif instances as read from the pka_ph_pi.xml file. |
112 |
|
|
|
113 |
|
|
The PkaPhPi instance takes ownership of the items and of the list itself. |
114 |
|
|
*/ |
115 |
|
|
|
116 |
|
|
/*! |
117 |
|
|
\brief Constructs a PkaPhPi instance. |
118 |
|
|
|
119 |
|
|
\list |
120 |
|
|
\li \a polymer: .The polymer within the context of which the calculations are |
121 |
|
|
performed. |
122 |
|
|
\li \a calc_options: The options driving the calculations. |
123 |
|
|
\li \a monomer_list_p: .The list of \l Monomer instances. |
124 |
|
|
\li \a modif_list_p: .The list of \l Modif instances. |
125 |
|
|
\endlist |
126 |
|
|
*/ |
127 |
|
✗ |
PkaPhPi::PkaPhPi(libXpertMass::Polymer &polymer, |
128 |
|
|
libXpertMass::CalcOptions &calc_options, |
129 |
|
|
QList<libXpertMass::Monomer *> *monomer_list_p, |
130 |
|
✗ |
QList<libXpertMass::Modif *> *modif_list_p) |
131 |
|
✗ |
: m_polymer(polymer), |
132 |
|
✗ |
m_calcOptions(calc_options), |
133 |
|
✗ |
mpa_monomerList(monomer_list_p), |
134 |
|
✗ |
mpa_modifList(modif_list_p) |
135 |
|
|
{ |
136 |
|
✗ |
} |
137 |
|
|
|
138 |
|
|
/*! |
139 |
|
|
\brief Destructs this PkaPhPi instance. |
140 |
|
|
*/ |
141 |
|
✗ |
PkaPhPi::~PkaPhPi() |
142 |
|
|
{ |
143 |
|
✗ |
if(mpa_monomerList) |
144 |
|
|
{ |
145 |
|
✗ |
while(!mpa_monomerList->isEmpty()) |
146 |
|
✗ |
delete mpa_monomerList->takeFirst(); |
147 |
|
|
|
148 |
|
✗ |
delete mpa_monomerList; |
149 |
|
✗ |
mpa_monomerList = 0; |
150 |
|
|
} |
151 |
|
|
|
152 |
|
✗ |
if(mpa_modifList) |
153 |
|
|
{ |
154 |
|
✗ |
while(!mpa_modifList->isEmpty()) |
155 |
|
✗ |
delete mpa_modifList->takeFirst(); |
156 |
|
|
|
157 |
|
✗ |
delete mpa_modifList; |
158 |
|
|
|
159 |
|
✗ |
mpa_modifList = 0; |
160 |
|
|
} |
161 |
|
✗ |
} |
162 |
|
|
|
163 |
|
|
/*! |
164 |
|
|
\brief Sets the pH to \a ph. |
165 |
|
|
*/ |
166 |
|
|
void |
167 |
|
✗ |
PkaPhPi::setPh(double ph) |
168 |
|
|
{ |
169 |
|
✗ |
Q_ASSERT(ph > 0 && ph < 14); |
170 |
|
|
|
171 |
|
✗ |
m_ph = ph; |
172 |
|
✗ |
} |
173 |
|
|
|
174 |
|
|
|
175 |
|
|
/*! |
176 |
|
|
\brief Returns the pH. |
177 |
|
|
*/ |
178 |
|
|
double |
179 |
|
✗ |
PkaPhPi::ph() |
180 |
|
|
{ |
181 |
|
✗ |
return m_ph; |
182 |
|
|
} |
183 |
|
|
|
184 |
|
|
/*! |
185 |
|
|
\brief Returns the pI. |
186 |
|
|
*/ |
187 |
|
|
double |
188 |
|
✗ |
PkaPhPi::pi() |
189 |
|
|
{ |
190 |
|
✗ |
return m_pi; |
191 |
|
|
} |
192 |
|
|
|
193 |
|
|
/*! |
194 |
|
|
\brief Returns the positive charges. |
195 |
|
|
*/ |
196 |
|
|
double |
197 |
|
✗ |
PkaPhPi::positiveCharges() |
198 |
|
|
{ |
199 |
|
✗ |
return m_positiveCharges; |
200 |
|
|
} |
201 |
|
|
|
202 |
|
|
/*! |
203 |
|
|
\brief Returns the negative charges. |
204 |
|
|
*/ |
205 |
|
|
double |
206 |
|
✗ |
PkaPhPi::negativeCharges() |
207 |
|
|
{ |
208 |
|
✗ |
return m_negativeCharges; |
209 |
|
|
} |
210 |
|
|
|
211 |
|
|
/*! |
212 |
|
|
\brief Sets the calculation options to \a calc_options. |
213 |
|
|
*/ |
214 |
|
|
void |
215 |
|
✗ |
PkaPhPi::setCalcOptions(const libXpertMass::CalcOptions &calc_options) |
216 |
|
|
{ |
217 |
|
✗ |
m_calcOptions = calc_options; |
218 |
|
✗ |
} |
219 |
|
|
|
220 |
|
|
/*! |
221 |
|
|
\brief Sets the monomer list to \a monomer_list_p. |
222 |
|
|
|
223 |
|
|
The list and its contents are now owned by this PkaPhPi instance. |
224 |
|
|
*/ |
225 |
|
|
void |
226 |
|
✗ |
PkaPhPi::setMonomerList(QList<libXpertMass::Monomer *> *monomer_list_p) |
227 |
|
|
{ |
228 |
|
✗ |
Q_ASSERT(monomer_list_p); |
229 |
|
|
|
230 |
|
✗ |
mpa_monomerList = monomer_list_p; |
231 |
|
✗ |
} |
232 |
|
|
|
233 |
|
|
|
234 |
|
|
/*! |
235 |
|
|
\brief Sets the modification list to \a modif_list_p. |
236 |
|
|
|
237 |
|
|
The list and its contents are now owned by this PkaPhPi instance. |
238 |
|
|
*/ |
239 |
|
|
void |
240 |
|
✗ |
PkaPhPi::setModifList(QList<libXpertMass::Modif *> *modif_list_p) |
241 |
|
|
{ |
242 |
|
✗ |
Q_ASSERT(modif_list_p); |
243 |
|
|
|
244 |
|
✗ |
mpa_modifList = modif_list_p; |
245 |
|
✗ |
} |
246 |
|
|
|
247 |
|
|
/*! |
248 |
|
|
\brief Calculates the charges (positive and negative). |
249 |
|
|
|
250 |
|
|
The general scheme is : |
251 |
|
|
|
252 |
|
|
Get the list of the coordinates of the different \l Polymer region |
253 |
|
|
selections. For each first monomer and end monomer of a given region selection, |
254 |
|
|
check if the the region is an oligomer or a residual chain (m_selectionType of |
255 |
|
|
libXpertMass::CalcOptions); act accordingly. Also, check for each selection region |
256 |
|
|
if it encompasses the polymer left/right end. If the left/right end |
257 |
|
|
modifications are to be taken into account, act accordingly. |
258 |
|
|
|
259 |
|
|
The positive and negative charges are stored in the member \l m_positiveCharges |
260 |
|
|
and \l m_negativeCharges variables. |
261 |
|
|
|
262 |
|
|
Returns the count of chemical groups that have been processed. |
263 |
|
|
|
264 |
|
|
\sa calculatePi() |
265 |
|
|
*/ |
266 |
|
|
int |
267 |
|
✗ |
PkaPhPi::calculateCharges() |
268 |
|
|
{ |
269 |
|
✗ |
int processedChemicalGroups = 0; |
270 |
|
|
|
271 |
|
✗ |
m_positiveCharges = 0; |
272 |
|
✗ |
m_negativeCharges = 0; |
273 |
|
|
|
274 |
|
|
// We of course need monomers ! Instead, we may not need modifs. |
275 |
|
✗ |
if(!mpa_monomerList) |
276 |
|
✗ |
return -1; |
277 |
|
|
|
278 |
|
✗ |
int polymerSize = m_polymer.size(); |
279 |
|
|
|
280 |
|
|
const libXpertMass::CoordinateList &coordinateList = |
281 |
|
✗ |
m_calcOptions.coordinateList(); |
282 |
|
|
|
283 |
|
✗ |
for(int iter = 0; iter < coordinateList.size(); ++iter) |
284 |
|
|
{ |
285 |
|
✗ |
libXpertMass::Coordinates *coordinates = coordinateList.at(iter); |
286 |
|
|
|
287 |
|
✗ |
int startIndex = coordinates->start(); |
288 |
|
✗ |
int endIndex = coordinates->end(); |
289 |
|
|
|
290 |
|
|
bool leftMostCoordinates = |
291 |
|
✗ |
coordinateList.isLeftMostCoordinates(coordinates); |
292 |
|
|
bool rightMostCoordinates = |
293 |
|
✗ |
coordinateList.isRightMostCoordinates(coordinates); |
294 |
|
|
|
295 |
|
✗ |
for(int jter = startIndex; jter < endIndex + 1; ++jter) |
296 |
|
|
{ |
297 |
|
✗ |
const libXpertMass::Monomer *seqMonomer = m_polymer.at(jter); |
298 |
|
|
|
299 |
|
|
// qDebug() << __FILE__ << __LINE__ |
300 |
|
|
// << "-- libXpertMass::Monomer:" << seqMonomer->name() |
301 |
|
|
// << "position:" << jter + 1; |
302 |
|
|
|
303 |
|
|
// Find a monomer by the same code in our list of monomers |
304 |
|
|
// that have been fed with chemical group data. Note that |
305 |
|
|
// all the monomers in a given sequence must not |
306 |
|
|
// necessarily have a counterpart in the local list of |
307 |
|
|
// monoemers. For example, there might be cases in which a |
308 |
|
|
// given monomer might not bring any charge whatsoever. |
309 |
|
|
|
310 |
|
✗ |
int index = libXpertMass::Monomer::isCodeInList(seqMonomer->code(), |
311 |
|
✗ |
*mpa_monomerList); |
312 |
|
✗ |
if(index == -1) |
313 |
|
✗ |
continue; |
314 |
|
|
|
315 |
|
✗ |
const libXpertMass::Monomer *monomer = mpa_monomerList->at(index); |
316 |
|
✗ |
Q_ASSERT(monomer); |
317 |
|
|
|
318 |
|
|
// A monomer can have multiple such "CHEMICAL_GROUP" |
319 |
|
|
// properties. Indeed, for example for proteins, a monomer |
320 |
|
|
// might have three such chemical groups(and thus three |
321 |
|
|
// libXpertMass::Prop objects): one for the alpha NH2, one for the alpha |
322 |
|
|
// COOH and one for a residual chain chemical group, like |
323 |
|
|
// epsilon NH2 for lysine. |
324 |
|
|
|
325 |
|
✗ |
for(int kter = 0; kter < monomer->propList().size(); ++kter) |
326 |
|
|
{ |
327 |
|
✗ |
libXpertMass::Prop *prop = monomer->propList().at(kter); |
328 |
|
|
|
329 |
|
✗ |
if(prop->name() != "CHEMICAL_GROUP") |
330 |
|
✗ |
continue; |
331 |
|
|
|
332 |
|
|
// qDebug() << __FILE__ << __LINE__ |
333 |
|
|
// << "Monomer has property CHEMICAL_GROUP..."; |
334 |
|
|
|
335 |
|
|
// Get the chemical group out of the property. |
336 |
|
|
|
337 |
|
|
libXpertMass::ChemicalGroup *chemicalGroup = |
338 |
|
✗ |
static_cast<libXpertMass::ChemicalGroup *>(prop->data()); |
339 |
|
|
|
340 |
|
✗ |
if(chemicalGroup->polRule() & ChemicalGroupTrapping::LEFT_TRAPPED) |
341 |
|
|
{ |
342 |
|
|
// qDebug() << __FILE__ << __LINE__ |
343 |
|
|
// << "... that is CHEMGROUP_LEFT_TRAPPED"; |
344 |
|
|
|
345 |
|
|
// The chemical group we are dealing with is trapped |
346 |
|
|
// when the monomer is polymerized on the left end, that |
347 |
|
|
// is if the monomer is not the left end monomer of the |
348 |
|
|
// sequence being analyzed. |
349 |
|
|
|
350 |
|
|
// Thus we only can take it into account if one of |
351 |
|
|
// two conditions are met: |
352 |
|
|
|
353 |
|
|
// 1. The monomer is the left end monomer of the |
354 |
|
|
// whole polymer sequence. |
355 |
|
|
|
356 |
|
|
// 2. The monomer is the left end monomer of the |
357 |
|
|
// region selection AND the selection type is |
358 |
|
|
// oligomers(thus it does not get polymerized to |
359 |
|
|
// the previous selection region). |
360 |
|
|
|
361 |
|
✗ |
if(jter > 0) |
362 |
|
|
{ |
363 |
|
|
// Clearly we are not dealing with the left |
364 |
|
|
// end of the polymer, so check if we have to |
365 |
|
|
// account for this chemical group or not. |
366 |
|
|
|
367 |
|
✗ |
if(!leftMostCoordinates) |
368 |
|
|
{ |
369 |
|
|
// The current libXpertMass::Coordinates is not the |
370 |
|
|
// left-most libXpertMass::Coordinates in the |
371 |
|
|
// libXpertMass::CoordinateList, thus we cannot consider |
372 |
|
|
// it to be the "left end coordinates" of |
373 |
|
|
// the libXpertMass::CoordinateList. Just continue |
374 |
|
|
// without exploring any more. |
375 |
|
✗ |
continue; |
376 |
|
|
} |
377 |
|
✗ |
if(jter == startIndex) |
378 |
|
|
{ |
379 |
|
|
// The current monomer is the first |
380 |
|
|
// monomer of libXpertMass::Coordinates. We only take |
381 |
|
|
// into account the chemical group if each |
382 |
|
|
// libXpertMass::Coordinates is to be considered an |
383 |
|
|
// oligomer. |
384 |
|
|
|
385 |
|
✗ |
if(m_calcOptions.selectionType() != |
386 |
|
|
libXpertMass::SELECTION_TYPE_OLIGOMERS) |
387 |
|
✗ |
continue; |
388 |
|
|
} |
389 |
|
|
} |
390 |
|
|
} |
391 |
|
|
|
392 |
|
✗ |
if(chemicalGroup->polRule() & |
393 |
|
|
ChemicalGroupTrapping::RIGHT_TRAPPED) |
394 |
|
|
{ |
395 |
|
|
// qDebug() << __FILE__ << __LINE__ |
396 |
|
|
// << "... that is CHEMGROUP_RIGHT_TRAPPED"; |
397 |
|
|
|
398 |
|
|
// See explanations above. |
399 |
|
|
|
400 |
|
✗ |
if(jter < polymerSize - 1) |
401 |
|
|
{ |
402 |
|
|
// Clearly, we are not dealing with the right |
403 |
|
|
// end of the polymer. |
404 |
|
|
|
405 |
|
✗ |
if(!rightMostCoordinates) |
406 |
|
|
{ |
407 |
|
|
// The current libXpertMass::Coordinates is not the |
408 |
|
|
// right-most libXpertMass::Coordinates of the |
409 |
|
|
// libXpertMass::CoordinateList, thus we cannot consider |
410 |
|
|
// it to be the "right end coordinates" of |
411 |
|
|
// the libXpertMass::CoordinateList. Just continue |
412 |
|
|
// without exploring anymore. |
413 |
|
✗ |
continue; |
414 |
|
|
} |
415 |
|
✗ |
if(jter == endIndex) |
416 |
|
|
{ |
417 |
|
|
// The current monomer is the last monomer |
418 |
|
|
// of libXpertMass::Coordinates. We only take into |
419 |
|
|
// account the chemical group if each |
420 |
|
|
// libXpertMass::Coordinates is to be considered an |
421 |
|
|
// oligomer(and not a residual chain). |
422 |
|
|
|
423 |
|
✗ |
if(m_calcOptions.selectionType() != |
424 |
|
|
libXpertMass::SELECTION_TYPE_OLIGOMERS) |
425 |
|
✗ |
continue; |
426 |
|
|
} |
427 |
|
|
} |
428 |
|
|
} |
429 |
|
|
|
430 |
|
✗ |
if(iter == 0 && m_calcOptions.polymerEntities() & |
431 |
|
|
libXpertMass::POLYMER_CHEMENT_LEFT_END_MODIF) |
432 |
|
|
{ |
433 |
|
|
// We are iterating in the monomer that is at the |
434 |
|
|
// beginning of the polymer sequence. We should |
435 |
|
|
// test if the chemical group we are dealing with |
436 |
|
|
// right now has a special rule for the left end |
437 |
|
|
// of the polymer sequence region. |
438 |
|
|
|
439 |
|
✗ |
int ret = accountPolymerEndModif( |
440 |
|
|
libXpertMass::POLYMER_CHEMENT_LEFT_END_MODIF, *chemicalGroup); |
441 |
|
✗ |
if(ret >= 0) |
442 |
|
|
{ |
443 |
|
|
// qDebug() << __FILE__ << __LINE__ |
444 |
|
|
// << "Accounted for left end modif."; |
445 |
|
|
|
446 |
|
✗ |
processedChemicalGroups += ret; |
447 |
|
✗ |
continue; |
448 |
|
|
} |
449 |
|
|
} |
450 |
|
|
|
451 |
|
✗ |
if(iter == polymerSize - 1 && |
452 |
|
✗ |
m_calcOptions.polymerEntities() & |
453 |
|
|
libXpertMass::POLYMER_CHEMENT_RIGHT_END_MODIF) |
454 |
|
|
{ |
455 |
|
✗ |
int ret = accountPolymerEndModif( |
456 |
|
|
libXpertMass::POLYMER_CHEMENT_RIGHT_END_MODIF, *chemicalGroup); |
457 |
|
✗ |
if(ret >= 0) |
458 |
|
|
{ |
459 |
|
|
// qDebug() << __FILE__ << __LINE__ |
460 |
|
|
// << "Accounted for right end modif."; |
461 |
|
|
|
462 |
|
✗ |
processedChemicalGroups += ret; |
463 |
|
✗ |
continue; |
464 |
|
|
} |
465 |
|
|
} |
466 |
|
|
|
467 |
|
✗ |
if(m_calcOptions.monomerEntities() & |
468 |
|
✗ |
libXpertMass::MONOMER_CHEMENT_MODIF && |
469 |
|
✗ |
seqMonomer->isModified()) |
470 |
|
|
{ |
471 |
|
✗ |
int ret = accountMonomerModif(*seqMonomer, *chemicalGroup); |
472 |
|
✗ |
if(ret >= 0) |
473 |
|
|
{ |
474 |
|
|
// qDebug() << __FILE__ << __LINE__ |
475 |
|
|
// << "Accounted for monomer modif."; |
476 |
|
|
|
477 |
|
✗ |
processedChemicalGroups += ret; |
478 |
|
✗ |
continue; |
479 |
|
|
} |
480 |
|
|
} |
481 |
|
|
|
482 |
|
✗ |
double charge = calculateChargeRatio( |
483 |
|
✗ |
chemicalGroup->pka(), chemicalGroup->isAcidCharged()); |
484 |
|
|
|
485 |
|
|
// qDebug() << __FILE__ << __LINE__ |
486 |
|
|
// << "Charge:" << charge; |
487 |
|
|
|
488 |
|
✗ |
if(charge < 0) |
489 |
|
✗ |
m_negativeCharges += charge; |
490 |
|
✗ |
else if(charge > 0) |
491 |
|
✗ |
m_positiveCharges += charge; |
492 |
|
|
|
493 |
|
|
// qDebug() << __FILE__ << __LINE__ |
494 |
|
|
// << "Pos =" << m_positiveCharges |
495 |
|
|
// << "Neg = " << m_negativeCharges; |
496 |
|
|
|
497 |
|
✗ |
++processedChemicalGroups; |
498 |
|
|
} |
499 |
|
|
// End of |
500 |
|
|
// for (int kter = 0; kter < monomer->propList().size(); ++kter) |
501 |
|
|
|
502 |
|
|
// qDebug() << __FILE__ << __LINE__ |
503 |
|
|
// << "End dealing with libXpertMass::Monomer:" << |
504 |
|
|
// seqMonomer->name() |
505 |
|
|
// << "position:" << jter + 1; |
506 |
|
|
} |
507 |
|
|
// End of |
508 |
|
|
// for (int jter = startIndex; jter < endIndex + 1; ++jter) |
509 |
|
|
|
510 |
|
|
// qDebug() << __FILE__ << __LINE__ |
511 |
|
|
// << "End dealing with libXpertMass::Coordinates"; |
512 |
|
|
} |
513 |
|
|
// End of |
514 |
|
|
// for (int iter = 0; iter < coordinateList.size(); ++iter) |
515 |
|
|
|
516 |
|
|
// We have finished processing all the libXpertMass::Coordinates in the list. |
517 |
|
|
|
518 |
|
✗ |
return processedChemicalGroups; |
519 |
|
|
} |
520 |
|
|
|
521 |
|
|
/*! |
522 |
|
|
\brief Calculates the isoelectric point. |
523 |
|
|
|
524 |
|
|
The isoelectric point is the pH at which a given analyte will have a net charge |
525 |
|
|
of 0, that is, when the count of negative charges will be equal to the count of |
526 |
|
|
positive charges. |
527 |
|
|
|
528 |
|
|
The pI will be stored in the \l m_pi member variable. |
529 |
|
|
|
530 |
|
|
Returns the count of chemical groups that have been processed. |
531 |
|
|
|
532 |
|
|
\sa calculateCharges() |
533 |
|
|
*/ |
534 |
|
|
int |
535 |
|
✗ |
PkaPhPi::calculatePi() |
536 |
|
|
{ |
537 |
|
✗ |
int processedChemicalGroups = 0; |
538 |
|
✗ |
int iteration = 0; |
539 |
|
|
|
540 |
|
✗ |
double netCharge = 0; |
541 |
|
✗ |
double firstCharge = 0; |
542 |
|
✗ |
double thirdCharge = 0; |
543 |
|
|
|
544 |
|
|
// We of course need monomers ! Instead, we may not need modifs. |
545 |
|
✗ |
if(!mpa_monomerList) |
546 |
|
|
{ |
547 |
|
✗ |
m_pi = 0; |
548 |
|
✗ |
m_ph = 0; |
549 |
|
|
|
550 |
|
✗ |
return -1; |
551 |
|
|
} |
552 |
|
|
|
553 |
|
✗ |
m_ph = 0; |
554 |
|
|
|
555 |
|
|
while(true) |
556 |
|
|
{ |
557 |
|
|
// qDebug() << "Current pH being tested:" << m_ph; |
558 |
|
|
|
559 |
|
✗ |
processedChemicalGroups = calculateCharges(); |
560 |
|
|
|
561 |
|
✗ |
if(processedChemicalGroups == -1) |
562 |
|
|
{ |
563 |
|
✗ |
qDebug() << "Failed to calculate net charge for pH" << m_ph; |
564 |
|
|
|
565 |
|
✗ |
m_pi = 0; |
566 |
|
✗ |
m_ph = 0; |
567 |
|
|
|
568 |
|
✗ |
return -1; |
569 |
|
|
} |
570 |
|
|
|
571 |
|
✗ |
netCharge = m_positiveCharges + m_negativeCharges; |
572 |
|
|
|
573 |
|
|
// Note that if the 0.01 tested_ph step is enough to switch the |
574 |
|
|
// net charge from one excess value to another excess value in |
575 |
|
|
// the opposite direction, we'll enter an infinite loop. |
576 |
|
|
// |
577 |
|
|
// The evidence for such loop is that every other two measures, |
578 |
|
|
// the net charge of the polymer sequence will be the same. |
579 |
|
|
// |
580 |
|
|
// Here we test this so that we can break the loop. |
581 |
|
|
|
582 |
|
|
|
583 |
|
✗ |
++iteration; |
584 |
|
|
|
585 |
|
✗ |
if(iteration == 1) |
586 |
|
|
{ |
587 |
|
✗ |
firstCharge = netCharge; |
588 |
|
|
} |
589 |
|
✗ |
else if(iteration == 3) |
590 |
|
|
{ |
591 |
|
✗ |
thirdCharge = netCharge; |
592 |
|
|
|
593 |
|
✗ |
if(firstCharge == thirdCharge) |
594 |
|
✗ |
break; |
595 |
|
|
|
596 |
|
✗ |
iteration = 0; |
597 |
|
|
|
598 |
|
✗ |
firstCharge = netCharge; |
599 |
|
|
} |
600 |
|
|
|
601 |
|
|
// At this point we have to test the net charge: |
602 |
|
|
|
603 |
|
✗ |
if(netCharge >= -0.1 && netCharge <= 0.1) |
604 |
|
|
{ |
605 |
|
|
// qDebug() << "Breaking loop with netCharge:" << netCharge; |
606 |
|
|
|
607 |
|
✗ |
break; |
608 |
|
|
} |
609 |
|
|
|
610 |
|
✗ |
if(netCharge > 0) |
611 |
|
|
{ |
612 |
|
|
// The test ph is too low. |
613 |
|
|
|
614 |
|
✗ |
m_ph += 0.01; |
615 |
|
|
// qDebug() << "Set new pH m_ph += 0.01:" << m_ph |
616 |
|
|
// << "netCharge:" << netCharge; |
617 |
|
|
|
618 |
|
✗ |
continue; |
619 |
|
|
} |
620 |
|
|
|
621 |
|
✗ |
if(netCharge < 0) |
622 |
|
|
{ |
623 |
|
|
// The test ph is too high. |
624 |
|
|
|
625 |
|
✗ |
m_ph -= 0.01; |
626 |
|
|
// qDebug() << "Set new pH m_ph -= 0.01:" << m_ph |
627 |
|
|
// << "netCharge:" << netCharge; |
628 |
|
|
|
629 |
|
✗ |
continue; |
630 |
|
|
} |
631 |
|
|
} |
632 |
|
|
// End of |
633 |
|
|
// while(true) |
634 |
|
|
|
635 |
|
|
// At this point m_pi is m_ph. |
636 |
|
|
|
637 |
|
✗ |
m_pi = m_ph; |
638 |
|
|
// qDebug() << "pi is:" << m_pi; |
639 |
|
|
|
640 |
|
|
|
641 |
|
✗ |
return processedChemicalGroups; |
642 |
|
|
} |
643 |
|
|
|
644 |
|
|
/*! |
645 |
|
|
\brief Returns the ratio between the charged and the uncharged forms of the |
646 |
|
|
chemical entity using \a pka and \a is_acid_charged. If the charge is negative, |
647 |
|
|
the returned ratio is negative, positive otherwise. |
648 |
|
|
|
649 |
|
|
The charged and uncharged species are the AH an A- species of the acido-basic |
650 |
|
|
theory. |
651 |
|
|
|
652 |
|
|
The calculation is based on the use of the m_ph member variable value. |
653 |
|
|
*/ |
654 |
|
|
double |
655 |
|
✗ |
PkaPhPi::calculateChargeRatio(double pka, bool is_acid_charged) |
656 |
|
|
{ |
657 |
|
✗ |
double aOverAh = 0; |
658 |
|
|
|
659 |
|
✗ |
if(pka < 0) |
660 |
|
✗ |
return 0; |
661 |
|
✗ |
if(pka > 14) |
662 |
|
✗ |
return 0; |
663 |
|
|
|
664 |
|
✗ |
if(m_ph < 0) |
665 |
|
✗ |
return 0; |
666 |
|
✗ |
if(m_ph > 14) |
667 |
|
✗ |
return 0; |
668 |
|
|
|
669 |
|
|
|
670 |
|
|
// Example with pKa = 4.25(Glu) ; pH = 4.16, thus we are more |
671 |
|
|
// acidic than pKa, we expect AH to be greater than A by a small |
672 |
|
|
// margin. |
673 |
|
|
|
674 |
|
✗ |
aOverAh = (double)pow(10, (m_ph - pka)); |
675 |
|
|
// aOverAh = 0.81283051616409951 (confirmed manually) |
676 |
|
|
|
677 |
|
✗ |
if(aOverAh < 1) |
678 |
|
|
{ |
679 |
|
|
/* The solution contains more acid forms(AH) than basic forms |
680 |
|
|
(A). |
681 |
|
|
*/ |
682 |
|
✗ |
if(is_acid_charged) |
683 |
|
✗ |
return (1 - aOverAh); |
684 |
|
|
else |
685 |
|
|
// The acid is not charged, that is, it is a COOH. |
686 |
|
|
// AH = 1 - A |
687 |
|
|
// A = aOverAh.AH |
688 |
|
|
// A = aOverAh.(1-A) |
689 |
|
|
// A = aOverAh - aOverAh.A |
690 |
|
|
// A(1+aOverAh) = aOverAh |
691 |
|
|
// A = aOverAh /(1+aOverAh), for us this is |
692 |
|
|
// A = 0.81283 / 1.81283 = 0.448 |
693 |
|
|
|
694 |
|
|
// And not - aOverAh, that is - aOverAh. |
695 |
|
|
|
696 |
|
|
// Below seems faulty(20071204) |
697 |
|
|
// return(- aOverAh); |
698 |
|
|
|
699 |
|
|
// Tentative correction(20071204) |
700 |
|
✗ |
return (-(aOverAh / (1 + aOverAh))); |
701 |
|
|
} |
702 |
|
✗ |
else if(aOverAh > 1) |
703 |
|
|
{ |
704 |
|
|
/* The solution contains more basic forms(A) than acid forms |
705 |
|
|
(AH). |
706 |
|
|
*/ |
707 |
|
✗ |
if(is_acid_charged) |
708 |
|
✗ |
return (1 / aOverAh); |
709 |
|
|
else |
710 |
|
✗ |
return (-(1 - (1 / aOverAh))); |
711 |
|
|
} |
712 |
|
✗ |
else if(aOverAh == 1) |
713 |
|
|
{ |
714 |
|
|
/* The solution contains as many acid forms(AH) as basic forms |
715 |
|
|
(H). |
716 |
|
|
*/ |
717 |
|
✗ |
if(is_acid_charged) |
718 |
|
✗ |
return (aOverAh / 2); |
719 |
|
|
else |
720 |
|
✗ |
return (-aOverAh / 2); |
721 |
|
|
} |
722 |
|
|
else |
723 |
|
✗ |
qFatal("Programming error."); |
724 |
|
|
|
725 |
|
|
return 0; |
726 |
|
|
} |
727 |
|
|
|
728 |
|
|
/*! |
729 |
|
|
\brief Accounts for the \a chemical_group in the context of the \l Polymer \a |
730 |
|
|
end_modif. |
731 |
|
|
|
732 |
|
|
A chemical group is described as follows: |
733 |
|
|
|
734 |
|
|
\code |
735 |
|
|
<monomer> |
736 |
|
|
<code>C</code> |
737 |
|
|
<mnmchemgroup> |
738 |
|
|
<name>N-term NH2</name> |
739 |
|
|
<pka>9.6</pka> |
740 |
|
|
<acidcharged>TRUE</acidcharged> |
741 |
|
|
<polrule>left_trapped</polrule> |
742 |
|
|
<chemgrouprule> |
743 |
|
|
<entity>LE_PLM_MODIF</entity> |
744 |
|
|
<name>Acetylation</name> |
745 |
|
|
<outcome>LOST</outcome> |
746 |
|
|
</chemgrouprule> |
747 |
|
|
</mnmchemgroup> |
748 |
|
|
<mnmchemgroup> |
749 |
|
|
<name>C-term COOH</name> |
750 |
|
|
<pka>2.35</pka> |
751 |
|
|
<acidcharged>FALSE</acidcharged> |
752 |
|
|
<polrule>right_trapped</polrule> |
753 |
|
|
</mnmchemgroup> |
754 |
|
|
<mnmchemgroup> |
755 |
|
|
<name>Lateral SH2</name> |
756 |
|
|
<pka>8.3</pka> |
757 |
|
|
<acidcharged>FALSE</acidcharged> |
758 |
|
|
<polrule>never_trapped</polrule> |
759 |
|
|
</mnmchemgroup> |
760 |
|
|
</monomer> |
761 |
|
|
\endcode |
762 |
|
|
|
763 |
|
|
Returns the count of rules that were accounted for, or -1 if none was. |
764 |
|
|
*/ |
765 |
|
|
int |
766 |
|
✗ |
PkaPhPi::accountPolymerEndModif(PolymerChemEnt end_modif, |
767 |
|
|
const libXpertMass::ChemicalGroup &chemical_group) |
768 |
|
|
{ |
769 |
|
✗ |
QString modifName; |
770 |
|
✗ |
libXpertMass::ChemicalGroupRule *rule = nullptr; |
771 |
|
✗ |
int count = 0; |
772 |
|
|
|
773 |
|
|
// Get the name of the modification of the polymer (if any) and get |
774 |
|
|
// the rule dealing with that polymer modification (if any). |
775 |
|
|
|
776 |
|
✗ |
if(end_modif & libXpertMass::POLYMER_CHEMENT_LEFT_END_MODIF) |
777 |
|
|
{ |
778 |
|
✗ |
modifName = m_polymer.leftEndModif().name(); |
779 |
|
|
|
780 |
|
✗ |
rule = chemical_group.findRule("LE_PLM_MODIF", modifName); |
781 |
|
|
} |
782 |
|
✗ |
else if(end_modif & libXpertMass::POLYMER_CHEMENT_RIGHT_END_MODIF) |
783 |
|
|
{ |
784 |
|
✗ |
modifName = m_polymer.rightEndModif().name(); |
785 |
|
|
|
786 |
|
✗ |
rule = chemical_group.findRule("RE_PLM_MODIF", modifName); |
787 |
|
|
} |
788 |
|
|
else |
789 |
|
✗ |
qFatal("Programming erro."); |
790 |
|
|
|
791 |
|
|
|
792 |
|
|
// The polymer might not be modified, and also the chemical group |
793 |
|
|
// passed as parameter might not contain any rule about any polymer |
794 |
|
|
// modification. In that case we just have nothing to do. |
795 |
|
|
|
796 |
|
✗ |
if(modifName.isEmpty()) |
797 |
|
|
{ |
798 |
|
✗ |
if(rule) |
799 |
|
|
{ |
800 |
|
✗ |
double charge = calculateChargeRatio(chemical_group.pka(), |
801 |
|
✗ |
chemical_group.isAcidCharged()); |
802 |
|
✗ |
if(charge < 0) |
803 |
|
✗ |
m_negativeCharges += charge; |
804 |
|
✗ |
else if(charge > 0) |
805 |
|
✗ |
m_positiveCharges += charge; |
806 |
|
|
|
807 |
|
✗ |
return ++count; |
808 |
|
|
} |
809 |
|
|
else |
810 |
|
|
{ |
811 |
|
|
// The polymer end was NOT modified and the chemical group |
812 |
|
|
// was NOT eligible for a polymer end modification. This |
813 |
|
|
// means that we do not have to process it, and we return -1 |
814 |
|
|
// so that the caller function knows we did not do anything |
815 |
|
|
// and that this chemical group should continue to undergo |
816 |
|
|
// analysis without skipping it. |
817 |
|
|
|
818 |
|
✗ |
return -1; |
819 |
|
|
} |
820 |
|
|
} |
821 |
|
|
// End of |
822 |
|
|
// if (modifName.isEmpty()) |
823 |
|
|
|
824 |
|
✗ |
if(!rule) |
825 |
|
|
{ |
826 |
|
|
// This chemical group was not "designed" to receive any polymer |
827 |
|
|
// end modification, so we have nothing to do with it and we |
828 |
|
|
// return -1 so that the caller function knows we did not do |
829 |
|
|
// anything and that this chemical group should continue to |
830 |
|
|
// undergo analysis without skipping it. |
831 |
|
|
|
832 |
|
✗ |
return -1; |
833 |
|
|
} |
834 |
|
|
|
835 |
|
|
// At this point we know that the chemical group 'group' we are |
836 |
|
|
// analyzing is eligible for a polymer left end modification and |
837 |
|
|
// that it is indeed modified with a correcct modification. So we |
838 |
|
|
// have a rule for it. Let's continue the analysis. |
839 |
|
|
|
840 |
|
|
// Apparently the rule has data matching the ones we are looking |
841 |
|
|
// for. At this point we should now what action to take for this |
842 |
|
|
// group. |
843 |
|
|
|
844 |
|
✗ |
if(rule->fate() == ChemicalGroupRuleFate::LOST) |
845 |
|
|
{ |
846 |
|
|
// We do not use the current chemical group 'group' because the |
847 |
|
|
// polymer end's modification has abolished it. |
848 |
|
|
} |
849 |
|
✗ |
else if(rule->fate() == ChemicalGroupRuleFate::PRESERVED) |
850 |
|
|
{ |
851 |
|
✗ |
double charge = calculateChargeRatio(chemical_group.pka(), |
852 |
|
✗ |
chemical_group.isAcidCharged()); |
853 |
|
✗ |
if(charge < 0) |
854 |
|
✗ |
m_negativeCharges += charge; |
855 |
|
✗ |
else if(charge > 0) |
856 |
|
✗ |
m_positiveCharges += charge; |
857 |
|
|
|
858 |
|
✗ |
return ++count; |
859 |
|
|
} |
860 |
|
|
else |
861 |
|
✗ |
qFatal("Programming error."); |
862 |
|
|
|
863 |
|
|
// Whatever we should do with the left/right end monomer's chemgroup, |
864 |
|
|
// we should take into account the modification itself that might |
865 |
|
|
// have brought chemgroup(s) worth calculating their intrinsic |
866 |
|
|
// charges! |
867 |
|
|
|
868 |
|
|
// Find a modif object in the local list of modif objects, that has |
869 |
|
|
// the same name as the modification with which the left/right end |
870 |
|
|
// of the polymer is modified. We'll see what chemgroup(s) this |
871 |
|
|
// modification brings to the polymer sequence. |
872 |
|
|
|
873 |
|
✗ |
int index = libXpertMass::Modif::isNameInList(modifName, *mpa_modifList); |
874 |
|
|
|
875 |
|
✗ |
if(index == -1) |
876 |
|
|
{ |
877 |
|
|
// qDebug() << __FILE__ << __LINE__ |
878 |
|
|
// << "Information: following modif not in local list:" |
879 |
|
|
// << modifName; |
880 |
|
|
|
881 |
|
✗ |
return count; |
882 |
|
|
} |
883 |
|
|
|
884 |
|
✗ |
const libXpertMass::Modif *modif = mpa_modifList->at(index); |
885 |
|
✗ |
Q_ASSERT(modif); |
886 |
|
|
|
887 |
|
✗ |
for(int jter = 0; jter < modif->propList().size(); ++jter) |
888 |
|
|
{ |
889 |
|
✗ |
libXpertMass::Prop *prop = modif->propList().at(jter); |
890 |
|
|
|
891 |
|
✗ |
if(prop->name() != "CHEMICAL_GROUP") |
892 |
|
✗ |
continue; |
893 |
|
|
|
894 |
|
|
// Get the chemical group out of the property. |
895 |
|
|
|
896 |
|
|
const libXpertMass::ChemicalGroup *chemicalGroup = |
897 |
|
✗ |
static_cast<const libXpertMass::ChemicalGroup *>(prop->data()); |
898 |
|
|
|
899 |
|
✗ |
double charge = calculateChargeRatio(chemicalGroup->pka(), |
900 |
|
✗ |
chemicalGroup->isAcidCharged()); |
901 |
|
✗ |
if(charge < 0) |
902 |
|
✗ |
m_negativeCharges += charge; |
903 |
|
✗ |
else if(charge > 0) |
904 |
|
✗ |
m_positiveCharges += charge; |
905 |
|
|
|
906 |
|
✗ |
++count; |
907 |
|
|
} |
908 |
|
|
|
909 |
|
✗ |
return count; |
910 |
|
✗ |
} |
911 |
|
|
|
912 |
|
|
|
913 |
|
|
/*! |
914 |
|
|
\brief Accounts for the \a chemical_group in the context of the \a monomer. |
915 |
|
|
|
916 |
|
|
A chemical group is described as follows: |
917 |
|
|
|
918 |
|
|
\code |
919 |
|
|
<monomer> |
920 |
|
|
<code>C</code> |
921 |
|
|
<mnmchemgroup> |
922 |
|
|
<name>N-term NH2</name> |
923 |
|
|
<pka>9.6</pka> |
924 |
|
|
<acidcharged>TRUE</acidcharged> |
925 |
|
|
<polrule>left_trapped</polrule> |
926 |
|
|
<chemgrouprule> |
927 |
|
|
<entity>LE_PLM_MODIF</entity> |
928 |
|
|
<name>Acetylation</name> |
929 |
|
|
<outcome>LOST</outcome> |
930 |
|
|
</chemgrouprule> |
931 |
|
|
</mnmchemgroup> |
932 |
|
|
<mnmchemgroup> |
933 |
|
|
<name>C-term COOH</name> |
934 |
|
|
<pka>2.35</pka> |
935 |
|
|
<acidcharged>FALSE</acidcharged> |
936 |
|
|
<polrule>right_trapped</polrule> |
937 |
|
|
</mnmchemgroup> |
938 |
|
|
<mnmchemgroup> |
939 |
|
|
<name>Lateral SH2</name> |
940 |
|
|
<pka>8.3</pka> |
941 |
|
|
<acidcharged>FALSE</acidcharged> |
942 |
|
|
<polrule>never_trapped</polrule> |
943 |
|
|
</mnmchemgroup> |
944 |
|
|
</monomer> |
945 |
|
|
\endcode |
946 |
|
|
|
947 |
|
|
Returns the count of rules that were accounted for, or -1 if none was. |
948 |
|
|
*/ |
949 |
|
|
int |
950 |
|
✗ |
PkaPhPi::accountMonomerModif(const libXpertMass::Monomer &monomer, |
951 |
|
|
libXpertMass::ChemicalGroup &chemical_group) |
952 |
|
|
{ |
953 |
|
✗ |
QString modifName; |
954 |
|
✗ |
libXpertMass::ChemicalGroupRule *rule = 0; |
955 |
|
|
|
956 |
|
✗ |
int count = 0; |
957 |
|
|
|
958 |
|
|
// For each modification in the monomer, make the accounting work. |
959 |
|
|
|
960 |
|
✗ |
Q_ASSERT(mpa_modifList); |
961 |
|
✗ |
Q_ASSERT(mpa_modifList->size()); |
962 |
|
|
|
963 |
|
✗ |
for(int iter = 0; iter < monomer.modifList()->size(); ++iter) |
964 |
|
|
{ |
965 |
|
✗ |
libXpertMass::Modif *iterModif = monomer.modifList()->at(iter); |
966 |
|
|
|
967 |
|
|
// Get the name of the modification of the monomer(if any) and get |
968 |
|
|
// the rule dealing with that monomer modification(if any). |
969 |
|
|
|
970 |
|
✗ |
modifName = iterModif->name(); |
971 |
|
|
|
972 |
|
✗ |
rule = chemical_group.findRule("MONOMER_MODIF", modifName); |
973 |
|
|
|
974 |
|
✗ |
if(modifName.isEmpty()) |
975 |
|
|
{ |
976 |
|
|
// The monomer does not seem to be modified. However, we still |
977 |
|
|
// have to make sure that the chemgroup that we were parsing is |
978 |
|
|
// actually a chemgroup suitable for a modif. If this chemgroup |
979 |
|
|
// was actually suitable for a monomer modif, but it is not |
980 |
|
|
// effectively modified, that means that we have to calculate |
981 |
|
|
// the charge for the non-modified chemgroup... |
982 |
|
|
|
983 |
|
✗ |
if(rule) |
984 |
|
|
{ |
985 |
|
|
double charge = |
986 |
|
✗ |
calculateChargeRatio( |
987 |
|
✗ |
chemical_group.pka(), chemical_group.isAcidCharged()); |
988 |
|
✗ |
if(charge < 0) |
989 |
|
✗ |
m_negativeCharges += charge; |
990 |
|
✗ |
else if(charge > 0) |
991 |
|
✗ |
m_positiveCharges += charge; |
992 |
|
|
|
993 |
|
✗ |
return ++count; |
994 |
|
|
} |
995 |
|
|
else |
996 |
|
|
{ |
997 |
|
|
// The current monomer was NOT modified, and the chemgroup |
998 |
|
|
// was NOT eligible for a monomer modification. This means |
999 |
|
|
// that we do not have to process it, and we return -1 so |
1000 |
|
|
// that the caller function knows we did not do anything and |
1001 |
|
|
// that this chemgroup should continue to undergo analysis |
1002 |
|
|
// without skipping it. |
1003 |
|
|
|
1004 |
|
✗ |
return -1; |
1005 |
|
|
} |
1006 |
|
|
} |
1007 |
|
|
// End of |
1008 |
|
|
// if (modifName.isEmpty()) |
1009 |
|
|
|
1010 |
|
✗ |
if(!rule) |
1011 |
|
|
{ |
1012 |
|
|
// This chemgroup was not "designed" to receive any |
1013 |
|
|
// modification, so we have nothing to do with it, and we return |
1014 |
|
|
// -1 to let the caller know that its processing should be |
1015 |
|
|
// continued in the caller's function space. |
1016 |
|
|
|
1017 |
|
✗ |
return -1; |
1018 |
|
|
} |
1019 |
|
|
|
1020 |
|
|
// At this point, we know that the chemgroup we are analyzing is |
1021 |
|
|
// eligible for a modification and that we have a rule for it. Let's |
1022 |
|
|
// continue the analysis: |
1023 |
|
|
|
1024 |
|
|
// Apparently, a rule object has member data matching the ones we |
1025 |
|
|
// were looking for. At this point we should know what action to |
1026 |
|
|
// take for this chemgroup. |
1027 |
|
|
|
1028 |
|
✗ |
if(rule->fate() == ChemicalGroupRuleFate::LOST) |
1029 |
|
|
{ |
1030 |
|
|
// We do not use the current chemical group 'group' because the |
1031 |
|
|
// monomer modification has abolished it. |
1032 |
|
|
} |
1033 |
|
✗ |
else if(rule->fate() == ChemicalGroupRuleFate::PRESERVED) |
1034 |
|
|
{ |
1035 |
|
|
double charge = |
1036 |
|
✗ |
calculateChargeRatio(chemical_group.pka(), |
1037 |
|
✗ |
chemical_group.isAcidCharged()); |
1038 |
|
✗ |
if(charge < 0) |
1039 |
|
✗ |
m_negativeCharges += charge; |
1040 |
|
✗ |
else if(charge > 0) |
1041 |
|
✗ |
m_positiveCharges += charge; |
1042 |
|
|
|
1043 |
|
✗ |
return ++count; |
1044 |
|
|
} |
1045 |
|
|
else |
1046 |
|
✗ |
Q_ASSERT(0); |
1047 |
|
|
|
1048 |
|
|
// Whatever we should do with this monomer's chemgroup, we should |
1049 |
|
|
// take into account the modification itself that might have brought |
1050 |
|
|
// chemgroup(s) worth calculating their intrinsic charges! |
1051 |
|
|
|
1052 |
|
|
// Find a modif object in the local list of modif objects, that has |
1053 |
|
|
// the same name as the modification with which the monomer is |
1054 |
|
|
// modified. We'll see what chemgroup(s) this modification brings to |
1055 |
|
|
// the polymer sequence. |
1056 |
|
|
|
1057 |
|
✗ |
int index = libXpertMass::Modif::isNameInList(modifName, *mpa_modifList); |
1058 |
|
|
|
1059 |
|
✗ |
if(index == -1) |
1060 |
|
|
{ |
1061 |
|
|
// qDebug() << __FILE__ << __LINE__ |
1062 |
|
|
// << "Information: following modif not in local list:" |
1063 |
|
|
// << modifName; |
1064 |
|
|
|
1065 |
|
✗ |
return count; |
1066 |
|
|
} |
1067 |
|
|
|
1068 |
|
✗ |
libXpertMass::Modif *modif = mpa_modifList->at(index); |
1069 |
|
✗ |
Q_ASSERT(modif); |
1070 |
|
|
|
1071 |
|
✗ |
for(int jter = 0; jter < modif->propList().size(); ++jter) |
1072 |
|
|
{ |
1073 |
|
✗ |
libXpertMass::Prop *prop = modif->propList().at(jter); |
1074 |
|
|
|
1075 |
|
✗ |
if(prop->name() != "CHEMICAL_GROUP") |
1076 |
|
✗ |
continue; |
1077 |
|
|
|
1078 |
|
|
// Get the chemical group out of the property. |
1079 |
|
|
|
1080 |
|
|
const libXpertMass::ChemicalGroup *chemicalGroup = |
1081 |
|
✗ |
static_cast<const libXpertMass::ChemicalGroup *>(prop->data()); |
1082 |
|
|
|
1083 |
|
✗ |
double charge = calculateChargeRatio(chemicalGroup->pka(), |
1084 |
|
✗ |
chemicalGroup->isAcidCharged()); |
1085 |
|
✗ |
if(charge < 0) |
1086 |
|
✗ |
m_negativeCharges += charge; |
1087 |
|
✗ |
else if(charge > 0) |
1088 |
|
✗ |
m_positiveCharges += charge; |
1089 |
|
|
|
1090 |
|
✗ |
++count; |
1091 |
|
|
} |
1092 |
|
|
} |
1093 |
|
|
|
1094 |
|
✗ |
return count; |
1095 |
|
✗ |
} |
1096 |
|
|
|
1097 |
|
|
} // namespace libXpertMass |
1098 |
|
|
|
1099 |
|
|
} // namespace MsXpS |
1100 |
|
|
|